LLM Model¶
::: agenticai_core.designtime.models.llm_model.LlmModel options: show_root_heading: true show_source: false members_order: source
LlmModelConfig¶
::: agenticai_core.designtime.models.llm_model.LlmModelConfig options: show_root_heading: true show_source: false members_order: source
LlmModelBuilder¶
::: agenticai_core.designtime.models.llm_model.LlmModelBuilder options: show_root_heading: true show_source: false members_order: source show_if_no_docstring: true show_signature: true show_signature_annotations: true filters: - "!^_" # Hide private methods but show public ones
LlmModelConfigBuilder¶
::: agenticai_core.designtime.models.llm_model.LlmModelConfigBuilder options: show_root_heading: true show_source: false members_order: source show_if_no_docstring: true show_signature: true show_signature_annotations: true filters: - "!^_" # Hide private methods but show public ones
Usage Examples¶
Creating LLM Configuration¶
from agenticai_core.designtime.models.llm_model import LlmModel, LlmModelConfig
# Create model configuration
config = LlmModelConfig(
temperature=0.7,
max_tokens=1600,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
# Create LLM model
llm = LlmModel(
model="gpt-4o",
provider="Open AI",
connection_name="Default Connection",
max_timeout="60 Secs",
max_iterations="25",
modelConfig=config
)
Using Builder Pattern¶
from agenticai_core.designtime.models.llm_model import (
LlmModelBuilder, LlmModelConfigBuilder, LlmModelConfig
)
# Build config
config_dict = LlmModelConfigBuilder() \
.set_temperature(0.7) \
.set_max_tokens(1600) \
.set_top_p(0.9) \
.build()
config = LlmModelConfig(**config_dict)
# Build model
llm_dict = LlmModelBuilder() \
.set_model("gpt-4o") \
.set_provider("Open AI") \
.set_connection_name("Default Connection") \
.set_max_timeout("60 Secs") \
.set_max_iterations("25") \
.set_model_config(config) \
.build()
llm = LlmModel(**llm_dict)
Provider-Specific Examples¶
OpenAI¶
llm = LlmModel(
model="gpt-4o",
provider="Open AI",
connection_name="OpenAI Connection",
modelConfig=LlmModelConfig(
temperature=0.7,
max_tokens=1600,
frequency_penalty=0.0,
presence_penalty=0.0,
top_p=1.0
)
)
Anthropic (Claude)¶
llm = LlmModel(
model="claude-3-5-sonnet-20240620",
provider="Anthropic",
connection_name="Anthropic Connection",
modelConfig=LlmModelConfig(
temperature=1.0,
max_tokens=1024,
top_p=0.7,
top_k=5 # Anthropic-specific parameter
)
)
Azure OpenAI¶
llm = LlmModel(
model="gpt-4",
provider="Azure OpenAI",
connection_name="Azure Connection",
modelConfig=LlmModelConfig(
temperature=0.8,
max_tokens=2048
)
)
Parameter Guidelines¶
Temperature (0.0 - 2.0)¶
- 0.0 - 0.3: Deterministic, focused responses (good for factual tasks)
- 0.4 - 0.7: Balanced creativity and consistency
- 0.8 - 1.5: Creative, diverse responses
- 1.6 - 2.0: Highly random (experimental)
Top P (0.0 - 1.0)¶
- 0.1 - 0.5: Very focused sampling
- 0.6 - 0.9: Balanced diversity
- 0.95 - 1.0: Maximum diversity
Max Tokens¶
- Set based on expected response length
- Consider context window limits of the model